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Abstract
Music source separation, or music demixing, is the task of decomposing a song into its con-
stituent sources, which are typically isolated instruments (e.g., drums, bass, and vocals).
The Music Demixing Challenge1 (Mitsufuji et al., 2021) was created to inspire new demixing
research. Open-Unmix (UMX) (Stöter et al., 2019), and the improved variant CrossNet-Open-
Unmix (X-UMX) (Sawata et al., 2021), were included in the challenge as the baselines. Both
models use the Short-Time Fourier Transform (STFT) as the representation of music signals.
The time-frequency uncertainty principle states that the STFT of a signal cannot be maximally
precise in both time and frequency (Gabor, 1946). The tradeoff in time-frequency resolution
can significantly affect music demixing results (Simpson, 2015). Our proposed adaptation of
UMX replaced the STFT with the sliCQT (Holighaus et al., 2013), a time-frequency transform
with varying time-frequency resolution. Unfortunately, our model xumx-sliCQ2 (Hanssian,
2021) achieved lower demixing scores than UMX.

Background
The STFT is computed by applying the Discrete Fourier Transform on fixed-size windows of the
input signal. From both auditory and musical motivations, variable-size windows are preferred,
with long windows in low-frequency regions to capture detailed harmonic information with a
high frequency resolution, and short windows in high-frequency regions to capture transients
with a high time resolution (Dörfler, 2002). The sliCQ Transform (sliCQT) (Holighaus et al.,
2013) is a realtime variant of the Nonstationary Gabor Transform (NSGT) (Balazs et al., 2011).
These are time-frequency transforms with complex Fourier coefficients and perfect inverses
that use varying windows to achieve nonlinear time or frequency resolution. An example
application of the NSGT/sliCQT is an invertible Constant-Q Transform (CQT) (Brown, 1991).

Method
In music demixing, the oracle estimator represents the upper limit of performance using ground
truth signals. In UMX, the phase of the STFT is discarded and the estimated magnitude STFT
of the target is combined with the phase of the mix for the first estimate of the waveform. This
is sometimes referred to as the “noisy phase” (Wichern et al., 2019), described by Equation 1.

X̂target = |Xtarget| · ∡Xmix (1)

The sliCQT parameters were chosen randomly in a 60-iteration search for the largest median
SDR across the four targets (vocals, drums, bass, other) from the noisy-phase waveforms of
the MUSDB18-HQ (Rafii et al., 2019) validation set. The sliCQT parameters of 262 frequency
bins on the Bark scale between 32.9–22050 Hz achieved 7.42 dB in the noisy phase oracle,

1https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021
2https://github.com/sevagh/xumx-sliCQ
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beating the 6.23 dB of the STFT with the UMX window and overlap of 4096 and 1024 samples
respectively. STFT and sliCQT spectrograms of a glockenspiel signal3 are shown in Figure 1.

Figure 1: STFT and sliCQT spectrograms of the musical glockenspiel signal.

The STFT outputs a single time-frequency matrix where all of the frequency bins are spaced
uniformly apart and have the same time resolution. The sliCQT groups frequency bins, which
may be nonuniformly spaced, in a ragged list of time-frequency matrices, where each matrix
contains frequency bins that share the same time resolution. In xumx-sliCQ, convolutional
layers adapted from an STFT-based vocal separation model (Grais et al., 2021) were applied
separately to each time-frequency matrix, shown in Figure 2.

Figure 2: Example of convolutional layers applied to a ragged sliCQT.

Results
Our model, xumx-sliCQ, was trained on MUSDB18-HQ. On the test set, xumx-sliCQ achieved
a median SDR of 3.6 dB versus the 4.64 dB of UMX and 5.54 dB of X-UMX, performing
worse than the original STFT-based models. The overall system architecture of xumx-sliCQ
is similar to X-UMX, shown in Figure 3.

Figure 3: xumx-sliCQ overall system diagram.
3https://github.com/ltfat/ltfat/blob/master/signals/gspi.wav
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